skip to main content


Search for: All records

Creators/Authors contains: "Leimberger, Kara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Abstract

    Mutualistic relationships, such as those between plants and pollinators, may be vulnerable to the local extinctions predicted under global environmental change. However, network theory predicts that plant–pollinator networks can withstand species loss if pollinators switch to alternative floral resources (rewiring). Whether rewiring occurs following species loss in natural communities is poorly known because replicated species exclusions are difficult to implement at appropriate spatial scales.

    We experimentally removed a hummingbird‐pollinated plant,Heliconia tortuosa, from within tropical forest fragments to investigate how hummingbirds respond to temporary loss of an abundant resource. Under therewiring hypothesis, we expected that behavioural flexibility would allow hummingbirds to use alternative resources, leading to decreased ecological specialization and reorganization of the network structure (i.e. pairwise interactions). Alternatively, morphological or behavioural constraints—such as trait‐matching or interspecific competition—might limit the extent to which hummingbirds alter their foraging behaviour.

    We employed a replicated Before‐After‐Control‐Impact experimental design and quantified plant–hummingbird interactions using two parallel sampling methods: pollen collected from individual hummingbirds (‘pollen networks’, created from >300 pollen samples) and observations of hummingbirds visiting focal plants (‘camera networks’, created from >19,000 observation hours). To assess the extent of rewiring, we quantified ecological specialization at the individual, species and network levels and examined interaction turnover (i.e. gain/loss of pairwise interactions).

    H. tortuosaremoval caused some reorganization of pairwise interactions but did not prompt large changes in specialization, despite the large magnitude of our manipulation (on average, >100 inflorescences removed in exclusion areas of >1 ha). Although some individual hummingbirds sampled through time showed modest increases in niche breadth followingHeliconiaremoval (relative to birds that did not experience resource loss), these changes were not reflected in species‐ and network‐level specialization metrics.

    Our results suggest that, at least over short time‐scales, animals may not necessarily shift to alternative resources after losing an abundant food resource—even in species thought to be highly opportunistic foragers, such as hummingbirds. Given that rewiring contributes to theoretical predictions of network stability, future studies should investigate why pollinators might not expand their diets after a local resource extinction.

     
    more » « less
  3. Abstract

    Research hypotheses have been a cornerstone of science since before Galileo. Many have argued that hypotheses (1) encourage discovery of mechanisms, and (2) reduce bias—both features that should increase transferability and reproducibility. However, we are entering a new era of big data and highly predictive models where some argue the hypothesis is outmoded. We hypothesized that hypothesis use has declined in ecology and evolution since the 1990s, given the substantial advancement of tools further facilitating descriptive, correlative research. Alternatively, hypothesis use may have becomemorefrequent due to the strong recommendation by some journals and funding agencies that submissions have hypothesis statements. Using a detailed literature analysis (N = 268 articles), we found prevalence of hypotheses in eco–evo research is very low (6.7%–26%) and static from 1990–2015, a pattern mirrored in an extensive literature search (N = 302,558 articles). Our literature review also indicates that neither grant success nor citation rates were related to the inclusion of hypotheses, which may provide disincentive for hypothesis formulation. Here, we review common justifications for avoiding hypotheses and present new arguments based on benefits to the individual researcher. We argue that stating multiple alternative hypotheses increases research clarity and precision, and is more likely to address the mechanisms for observed patterns in nature. Although hypotheses are not always necessary, we expect their continued and increased use will help our fields move toward greater understanding, reproducibility, prediction, and effective conservation of nature.

     
    more » « less